Home » Frugivore Teeth: What Chimpanzees Reveal About the Natural Human Diet!
Biology

Frugivore Teeth: What Chimpanzees Reveal About the Natural Human Diet!

The dental structure of humans and chimpanzees is strikingly similar. The nearly identical teeth do not only generate familiar smiles in our primate cousin, but dentition is also one of the most significant traits to study regarding the foods an animal can eat in the wild! Thus, shared dental structures usually indicate a highly similar diet. Let's explore what we can learn from chimpanzees about our species' natural diet.

What chimpanzees teeth reveal about the human diet: We are frugivores!

Dental structures are important anatomical traits to investigate the diet type and dietary ecology of a species. Thus, by studying the chimpanzees’ dentition and diet in the wild and comparing it with human dentition, we can learn what our natural diets have in common. After all, it is the striking similarities between human and chimpanzee teeth that have convinced a growing number of people to adopt a high-fruit diet – inspired by the chimpanzees!

Chimpanzees are a highly frugivorous primate species, and their teeth are shaped as specialized tools for eating tropical fruits – and human dentition, too! This is not a new idea, which hit the public several decades ago in The New York Times, which wrote: “PRELIMINARY studies of fossil teeth have led an anthropologist to the startling suggestion that early human ancestors were not predominantly meat eaters or even eaters of seeds, shoots, leaves or grasses. Nor were they omnivorous. Instead, they appear to have subsisted chiefly on a diet of fruit.” (source)

We should, thus, dig into the question: Are human teeth those of a frugivore, too? In this article, we compare dental biology and tooth structure but also discuss differences like canine size and enamel thickness to elaborate on the similarity of the diet of the two species.

Chimpanzee and human dentition – How much history do we share?

The dental structure plays a critical role in determining the food preferences of an animal species. Tooth shape, size, structure and position help to shed light on their distinct evolutionary history regarding diet. This is no different for humans and chimpanzees – our closest primate family.

Primates have been confined to tropical latitudes (Emes et al., 2011) where they have evolved in tropical climates and with tropical food sources. This includes humans, which originated in tropical Africa (Daanen et al., 2016). Chimpanzees and humans are classified together in the superfamily Hominidae and share approximately 98% of DNA, which explains the close similarity between their dentition (Machanda et.al. 2015).

The teeth of primates (for this case, humans and chimpanzees) can be distinguished based on position, form, and function into incisors, premolars, canines, and molars; this is the heterodont dentition. 

We know that form follows function. Hence it is not surprising that humans and chimpanzee dental function seems very much the same: According to Machanda et al. (2015), in the dental structure of both human beings and chimpanzees, the functions of the various types of teeth are comparable; incisors aid in cutting, canines enable piercing and ripping, while premolars and molars facilitate grinding. This indicates that their species’ diets are very similar.

But to get a better idea of what characteristics the dentition of chimpanzees and humans have in common, and also in what they differ, let’s look at the anatomy in detail:

Similarities between chimpanzee and human teeth

List of morphological similarities of chimpanzee and human dentition:

  • Number of teeth: Humans and Chimps both have 32 teeth.
  • Same number of each type of tooth: We share the heterodont dental formula (2.1.2.3) with Chimpanzees. The dental formula represents the number of the four types of teeth (2 incisors, 1 canine, 2 premolars, and 3 molars for each side). Their teeth can be distinguished based on position, form, and function into premolars, canines, incisors, and molars. 
  • Large incisors: The incisors of both species are long and are shaped to slice through fruit peels and “take a bite”, unlike insectivores or folivores (read more here)
  • Bunodont molars: Broad, flat-shaped molars, with rounded cusps are typical for frugivorous primates – unlike insectivores or folivores (read more here)
  • Two sets of teeth: Both humans and chimpanzees are diphyodont, with dental changes after the juvenile life stage: We grow milk or deciduous teeth, which fall off as the baby matures, and then develop a permanent set of teeth in place of the milk teeth (all their deciduous incisors, molars, canines, and premolars have a single set of replacement teeth). Numerous baby teeth persist till some permanent teeth are in place.
  • Periodontal ligament: The dental roots are attached to a bony alveolus through a suspensory ligament (Emes et al., 2011). 
  • Enamel formation: Recent histological research studies on the formation of enamel crown in primates have suggested numerous resemblances during the time of molar formation in both chimpanzees and humans. 
  • Anatomy of the root canal: The anatomy of the root canal varies depending on the type of tooth as well as the morphology of the root.
  • Gradient of the thickness of the molar enamel: The enamel thickness increases from the anterior towards the posterior section of the jaws of both humans and chimpanzees (Machanda et al. 2015). Smith et al. (2008) postulate that the front-to-back increase in the thickness of the enamel in both humans and chimpanzees may be associated with the varying bite forces along the rows of the teeth. 

Differences between chimpanzee and human teeth

When looking at differences between human and chimpanzee teeth, we need to keep in mind, that we are looking at two distinct but closely related species. This means that while there are differences, the overall dental pattern is shared!

To put the extent of the differences into perspective, if we compare humans to other mammals like giraffes (folivorous herbivore), pigs (omnivore), or wolves (carnivore), the differences in dentition are of magnitudes larger, than when comparing humans and Chimpanzees. Because those animal species have a completely different dietary ecology than we do!

That said, there are evident differences in relative jaw size and shape, as well as the extent of canine growth, plus a few smaller differences, which might give us a hint about differences in the diets of humans and chimpanzees.

List of morphological differences between chimpanzee and human dentition:

  • General teeth size: Humans have smaller molars and premolars. Chimpanzees’ incisors are broad and spatulate (the anterior teeth are relatively larger than the posterior ones while in human beings, the posterior teeth are larger than the front teeth). 
  • Size of the canines: Humans have smaller canines than Chimpanzees. Also, besides canine size, there are some other remarkable differences in canines and questions related to function (diet type) that deserve a discussion on their own (see below). Additionally, chimpanzees have large interlocking canines to the extent that the distal exteriors of the upper-jaw canines establish contact with the anterior surfaces of their third premolars on the lower jaw (Harcourt-Smith, 2010).
  • Sexual dimorphic canines: Canine teeth of chimpanzees are sexually dimorphic, those of humans are not.
  • Enamel thickness: Chimpanzees have relatively thinner enamel than humans. See what this means in terms of function and diet below.
  • Number of cusps of premolars: Premolars in humans are bicuspid, the premolars in chimpanzees have between 4-7 cusps.
  • Relative Jaw size: The Jaws in human beings are smaller, more gracile, and project less in comparison to those of chimpanzees of their equivalent size.
  • Jaw shape: The lower and upper jaws of chimpanzees are U-shaped, with parallel molar rows, with teeth diverging anteriorly (Machanda et.al. 2015). On the contrary, human beings have shorter lower and upper jaws which are either V or bow-shaped, with teeth separating posteriorly and their dentition are comparatively uniform both in shape and in size (Smith et.al., 2007). 
  • Diastema: Chimps have a gap beside their canines and incisors.
  • Roof of the mouth: The palate (roof of the mouth) in humans is largely arched. Chimps have a flat palate.
  • Diastema: Chimpanzees lack a diastema.
  • Timing in dental root development: In Chimpanzees, the peak in root growth rate corresponds with the time a specific tooth commences functioning. This allows chewing on the tooth to start as soon as possible. However in humans, the spurt comes before eruption, while the teeth are still hidden under the gums – as a result chewing on the teeth does not start immediately (Dean & Cole, 2014). 

Do the dental differences in humans and chimpanzees point towards dietary differences?

Some studies have associated the differences in structure and function of human and chimpanzee teeth to their evolutionary adaptations to feeding and general survival. What are the possible dietary differences indicated by canine size and enamel thickness – the two main traits that deviate between the two species?

Are the bigger canines in Chimpanzees diet-related?

Humans have smaller canines which are spade-shaped, tiny incisors. On the other hand, chimpanzees’ canines are long and sharp. Also, the dimorphism between males and female canines in chimpanzees is notable here – male chimpanzees have canines that are significantly larger and longer than those of their female counterparts.

Do the bigger canines in chimps have a function in dietary ecology? Typically enlarged and sharp canines are also associated with meat consumption. However, while hunting in chimpanzees is well-studied, there is no evidence to support that the bigger canines serve in hunting or meat-eating. On average, only 1-2% of their diet is meat, and in some individuals, it’s not clear if they consume meat at all. However, when they do, the hunting and handling of the prey’s flesh is male business. Thus the large canines in males might play a role in this behavior, too. This is purely speculative, though!

Human canines do not exhibit sexual dimorphism (Smith et al., 2007). In humans canines are much reduced in size and have almost lost their function. Therefore it seems possible that humans are biologically less equipped to hunt and eat meat than Chimpanzees. This would go in line with the instinctual and sensory behavioral difference: while chimps do eat raw meat and insect, to most humans, those animal foods do not look, smell or taste appealing straight from nature (uncooked and unseasoned). But again, this is just an observation that lead to an unproven hypothesis!

The large and sharp canines in chimpanzee males are mainly meant for threat and display purposes and as weapons in competition with other males.

Chimpanzee canine growth rate indicates their maturity levels – bigger and sharper canines indicate maturity in chimpanzees. 

Chimpanzee male have impressive canines!

Is thicker enamel in humans adaptive to fallback food?

Enamel thickness is thought to be adaptive to the dietary ecology of a species. Humans generally have the thickest enamel of primates. Chimpanzees, on the other hand, have relatively thin enamel.

But what does this difference tell us about dietary differences between humans and Chimpanzees? In short: not so much as previously thought! Seraching through scientific literature, there seem to be still more open questions than answers, and different hypotheses on the adaptive function of enamel thickness are being discussed and challenged. Thick enamel could have evolved due to the following:

  • A diet that includes more hard foods. This is the most common stated hypothesis, but also is often questioned.
  • Selective pressure from abrasive foods (like silica-rich phytoliths, leaves or acids) and gradual abrasion during a long lifespan.
  • Living in temperate climate and the seasonal foods variability – as opposed to tropical climate and fruit-availability.

Adaptation to crush hard foods?

Thick enamel is generally thought to be advantageous to crush hard foods, like nuts, roots, tubers, and seeds, while thinner enamel is due to a soft fruit-rich diet. This would indicate that humans either preferred hard foods, or had to eat more fallback foods because they left fruit-rich tropical areas and thus developed more suitable teeth for “durophagy”. However, a 2014 Harvard study found that enamel thickness could not support the hard-object feeding dietary pattern, at least in macaques: “Enamel thickness across the genus Macaca did not vary as would be expected if abrasive tissue loss, degree of folivory, or inferences of hard-object feeding of preferred or fallback foods served as strong selective pressures.” (Kato et al., 2014) They also stressed that their findings are preliminary.

Adaptation to seasonal environments?

They did, however, find that “enamel thickness was strongly associated with geographic distribution; macaque species in temperate environments had thicker enamel than did macaque species with tropical distributions… suggesting that thick enamel may be adaptive in seasonal environments. Additional research is needed to determine if thick enamel in temperate macaques is a response to intensified hard-object feeding, increased abrasion, and/or a broader diet with a greater range of food material properties” (Kato et al., 2014) This pattern along the climatic zones well-fits to explain the difference in enamel thickness in tropical chimpanzees and “temperate” humans, which again suits the fallback-food idea mentioned above.

Adaptation to the migration out of the tropical forests?

Ripe fruits were less available to humans when they migrated out of the fruit-rich, tropical forests. Thus they had to start eating more hard foods to survive – fallback foods (including savannah type environment)! Was this a potential selective force to drive the evolution of thicker enamel? If yes, strong enamel might be an advantageous adaptation to a diet outside the former fruity paradise.

Due to the ecological conditions found in temperate climates, cold-indigenous people show to have some traits that have changed and adapted to local diets (i.e. improved milk digestion) and thermoregulation. However, adaptations that emerged due to selective stressors encountered in the new environment do not signify that humans are now optimally adapted to the new environment. Humans remain a species that is largely adapted to tropical climates and habitat, including the food sources, as the migration has taken place much faster than most evolutionary changes can take place. Humans were able to survive outside their natural, warm habitat, because of cultural adaptations, like cooking and the use of fire and heating. See this article here, for more in-depth understanding.

Humans have biologically co-evolved with tropical fruits as seed-dispersers and people from temperate climates that “return” to live in the tropics report and enjoy enormous health benefits.

Conclusion

Are human teeth those of a frugivore, too? The short answer we found in this article is that the similarities clearly suggest we have a diet highly similar to that of chimpanzees! Among the many identical dental traits, chimpanzees and humans have both bunodont molars and large incisors typical for frugivores.

The appearance of the chimpanzee and human teeth is strikingly similar. We can even see with our own eyes how much our dentition resembles each other – compared to a cow or dog. That’s why we just love the chimpanzee smile, as we can recognize ourselves in it! And the anatomical comparison confirms the similarities.

Further, the dentition structural similarities suggest a similar function – which calls for the conclusion that the dietary biology of humans is highly likely closely related to the one of chimpanzees – a high-fruit diet! This conclusion is supported by two main features: the bunodont molars and incisor shape are typical for frugivorous primates in chimpanzees and humans!

The main morphological difference lies in the bigger canine size in male chimpanzees, which does not seem to play a major role in diet (meat-eating), but rather social behavior. Further, there is one trait (enamel thickness) that points towards an adaptation of humans to temperate climates and the foods of temperate climates when they migrated out of the tropics. They had to survive in sub-optimal habitats for frugivores – while chimpanzees did not. This does not mean, though, that humans are not still very well adapted to a highly frugivorous diet.

Our frugivorous cousins’ teeth are so similar to our own that it is very hard to deny that the species-appropriate diet is probably extremely similar. Here is where instinctual knowledge might answer some of the remaining open questions: what foods look, smells, and taste good to us when coming straight from nature? No cooking, seasoning or other processing allowed, though…

References

  1. Dean, C., & Cole, T. (2014). The timing of our tooth growth is an evolutionary relic. Significance11(3), 19-23. (link)
  2. Emes, Y., Aybar, B., & Yalcin, S. (2011). On the evolution of human jaws and teeth: a review. Bulletin of the International association for paleodontology5(1), 37-47. (link)
  3. H. A. M. Daanen, W. D. Van Marken Lichtenbelt, Human whole body cold adaptation. Temperature3, 104–118 (2016), doi:10.1080/23328940.2015.1135688. (link)
  4. Machanda, Z., Brazeau, N. F., Bernard, A. B., Donovan, R. M., Papakyrikos, A. M., Wrangham, R., & Smith, T. M. (2015). Dental eruption in East African wild chimpanzees. Journal of Human Evolution82, 137-144. (link)
  5. Shook, B., (2022) 5.2.: Key Traits Used to Distinguish Between Primate Taxa. LibreTexts Social Sciences. Available at: https://socialsci.libretexts.org/Bookshelves/Anthropology/Physical_Anthropology/EXPLORATIONS%3A__An_Open_Invitation_to_Biological__Anthropology/05%3A_Meet_the_Living_Primates/5.02%3A_Key_Traits_Used_to_Distinguish_Between_Primate_Taxa (Accessed: April 23, 2023). 
  6. Harcourt-Smith, W. H. (2010). The first hominins and the origins of bipedalism. Evolution: Education and Outreach3(3), 333-340. (link)
  7. Smith, T. M. (2013). Teeth and human life-history evolution. Annu. Rev. Anthropol42(191), e208. (link)
  8. Smith, T. M., Olejniczak, A. J., Reh, S., Reid, D. J., & Hublin, J. J. (2008). Brief communication: enamel thickness trends in the dental arcade of humans and chimpanzees. American Journal of Physical Anthropology: The Official Publication of the American Association of Physical Anthropologists136(2), 237-241. (link)
  9. Smith, T. M., Reid, D. J., Dean, M. C., Olejniczak, A. J., & Martin, L. B. (2007). New perspectives on chimpanzee and human molar crown development. Dental perspectives on human evolution: state of the art research in dental paleoanthropology (pp. 177-192). Springer, Dordrecht. (link)
  10. M. Llorente, D. Riba, M. Mosquera, M. Ventura, O. Feliu, Hunting activity among naturalistically housed chimpanzees (Pan Troglodytes) at the fundació Mona (Girona, Spain). Predation, occasional consumption and strategies in rehabilitated animals. Animals2, 363–376 (2012), doi:10.3390/ani2030363. (link)
  11. J. M. Plavcan, C. B. Ruff, Canine size, shape, and bending strength in primates and carnivores. American Journal of Physical Anthropology136, 65–84 (2008), doi:10.1002/ajpa.20779. (link)
  12. J. D. Pampush et al., Homoplasy and thick enamel in primates. Journal of Human Evolution64, 216–224 (2013), doi:10.1016/j.jhevol.2013.01.009. (link
  13. E. Weeks, Getting to the root of enamel evolution. Duke Today (2014) (available at https://today.duke.edu/2014/05/enamelevolution). (link)
  14. A. Kato et al., Intra- and interspecific variation in macaque molar enamel thickness. American Journal of Physical Anthropology155, 447–459 (2014), doi:10.1002/ajpa.22593. (link)

Add Comment

Click here to post a comment

Are We Frugivores?

Are you curious about what our species has evolved to eat? Are you on the quest for optimal health by sticking to the human natural diet? Good! We have the same mission! Uncover the secrets of our evolutionary diet with our independent and dogma-free articles. Dive into our free guides and fruit-based healing  – based on science, experience, and a higher perspective.

Read more…

Martina Spaeni Lima, MSc

"We are frugivores - specialized fruit-eaters!" It was passion at first sight when I came across the intriguing concept that humans are adapted to a high-fruit diet, similar to chimpanzees...

Medical Disclaimer

The content on this website serves informational purposes only. It is not intended as medical advice. Read our full medical disclaimer here.

Follow us

Get involved with the community and learn more about the frugivore diet on Facebook and YouTube!